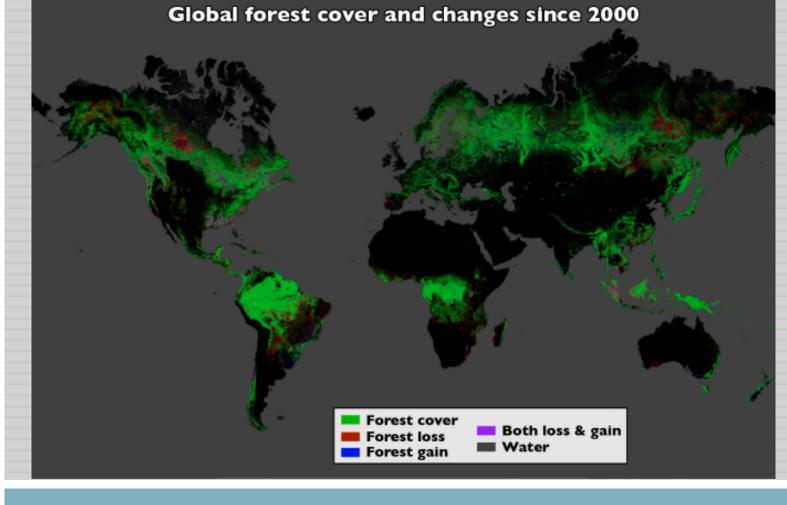


Welcome to NASA Applied Remote Sensing Training (ARSET) Webinar Series

Introduction to Remote Sensing Data for Land Management


Course Dates: Every Monday, November 3- December 1

Time: 12pm-1pm EDT

Landsat, Global forest cover and change since 2000.

(NASA Goddard, based on data from Hansen et al., 2013)

November 17, 2014

Thank You!!

Cindy Schmidt
Cynthia.L.Schmidt@nasa.gov

Amber Kuss
Amberjean.M.Kuss@nasa.gov

Welcome to NASA Applied Remote Sensing Training (ARSET) Webinar Series

Introduction to Remote Sensing Data for Land Management

Course Dates: Every Monday, November 3- December 1

Time: 12pm-1pm EDT

Important Information

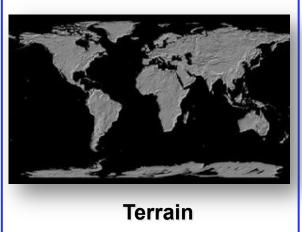
- Presentations and recorded links URL:
 - □ http://arset.gsfc.nasa.gov/webinars
- Certificate of Completion
 - Attend all 5 webinars
 - Assignment 1 download from training website or from the ARSET land webinar website
 - Assignment 2- after Week 4

ARSET Land Resource Management

http://arset.gsfc.nasa.gov/eco/webinars/

Course Outline

Week 1


Intro. & Background: Satellite Remote Sensing

Week 2

Land Cover Mapping/ Web tools for data access

Week 3

Week 5

Week 4

Change Detection

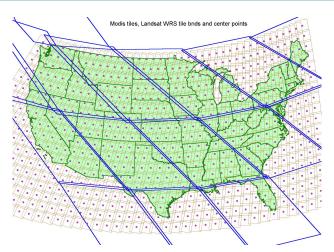
Web tools for data access/ Integration with GIS

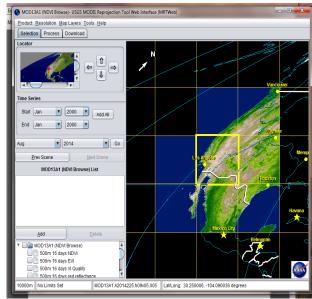
Your Course Instructors for This Week

- Amber Kuss (ARSET)
 - □ amberjean.m.kuss@nasa.gov
- Lindsey Harriman (LP DAAC)
 - Science Communications Lead
 - □ <u>Iharriman@usgs.gov</u>
- Kelly Lemig (LP DAAC)
 - User Services Technical Lead
 - klemig@usgs.gov

General inquiries about ARSET: Ana Prados (ARSET) aprados@umbc.edu

Outline


- Brief review of last week
- Terrain Data in the LP DAAC
 - Overview of what terrain data can be used for
 - ASTER Global Digital Elevation Model (GDEM)
 - Product overview, visuals, case study, access points
 - NASA SRTM Version 3.0
 - Products overview, visuals, case study, access points
- Live Demo
 - Global Data Explorer (GDEx)


Review of Week 2

Week 2

- Data Processing Levels
 - Levels 1 and 2: highest spatial and temporal resolution
 - Levels 3 and 4: derived products, lower resolution
- Landsat Data Overview
 - Passive sensor
 - Band overview and resolution
 - Where to obtain imagery
- MODIS Data Overview
 - Passive sensor
 - Band overview and resolution
 - Where to obtain imagery
- Live Demo: MRT Web

LP DAAC Overview and Live Demo

Terrain Data at the LP DAAC

Lindsey Harriman, Innovate! Inc. & Kelly Lemig, ERT, Inc. Contractors to the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center Sioux Falls, South Dakota

*Work performed under USGS contract G10PC00044

Overview of Terrain Data at the LP DAAC:

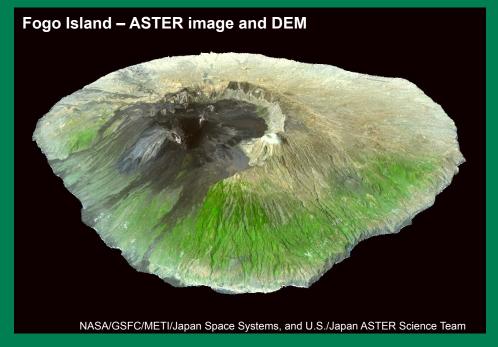
Lindsey Harriman, Innovate!, Inc.

LP DAAC Science Communications Lead

Iharriman@usgs.gov

Demonstration of Global Data Explorer (GDEx):

Kelly Lemig, ERT, Inc.


LP DAAC User Services Technical Lead

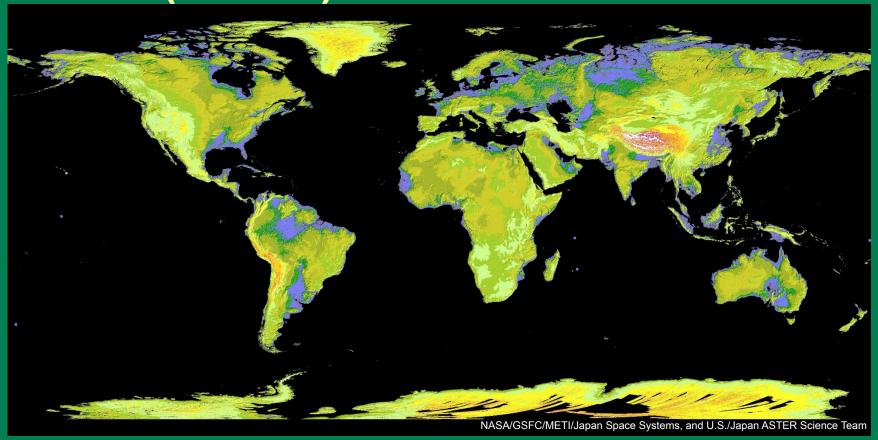
klemig@usgs.gov

Terrain Data and Land Management

- Visualize satellite data in 3D
- Map
 - Hazardous terrain
- Calculate
 - Slope and aspect
 - Catchment area
 - Forest canopy height
- Model
 - Runoff
 - Stream networks
 - Landslides

Sources of Terrain Data

- GPS points
- Airborne and Satellite images
 - Photogrammetrically collect points or breaklines
 - Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
- Radar
 - Light Detection and Ranging (lidar)
 - Shuttle Radar Topography Mission (SRTM)
- Sonar



NASA LP DAAC

- LP DAAC = Land Processes Distributed Active Archive Center
- One of 12 of NASA's discipline-oriented data centers
- Located in Sioux Falls, SD at the USGS Earth Resources Observation Science (EROS) Center
- Processes, archives, and distributes remotely sensed land data products to the civilian remote sensing community
- https://lpdaac.usgs.gov

ASTER Global Digital Elevation Model (GDEM)

https://lpdaac.usgs.gov/products/aster_products_table/astgtm

What is ASTER?

ASTER

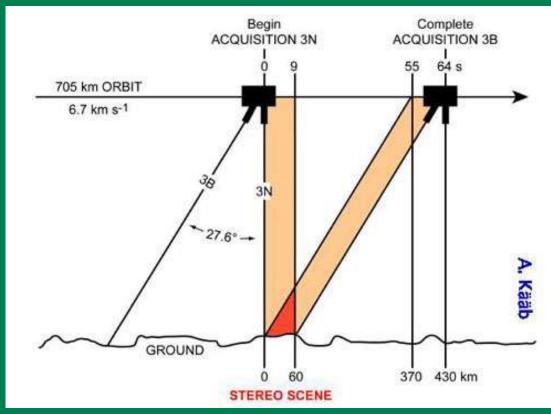
- Advanced Spaceborne Thermal Emission and Reflection Radiometer
- Onboard NASA Terra satellite
- Developed jointly by NASA and Japan's Ministry of Economy, Trade, and Industry (METI)

Bands

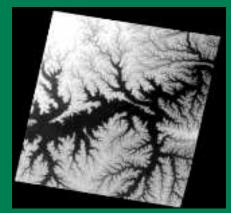
- 3 15 m bands in Visible & Near-infrared (VNIR)
- 6 30 m Shortwave Infrared (SWIR)
- 5 90 m Thermal Infrared (TIR)

ASTER Acquisition and Coverage

- Data collected since 2000
- ~2.5 million scenes
- ~515 scenes/day
- Global coverage
 - Taskable
 - Pointable
- Expedited



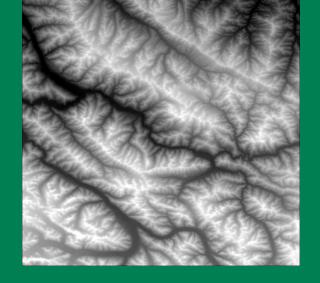
Spatial and temporal coverage may vary


 ASTER can collect in stereo (3D) in the NIR using nadir- and aft-looking near infrared cameras

Stereo Vision in the NIR

Courtesy: Global Land Ice Measurements from Space (GLIMS Switzerland). http://www.geo.unizh.ch/~kaeaeb/glims/glims.html

AST_14DEM



Courtesy: NASA & USGS

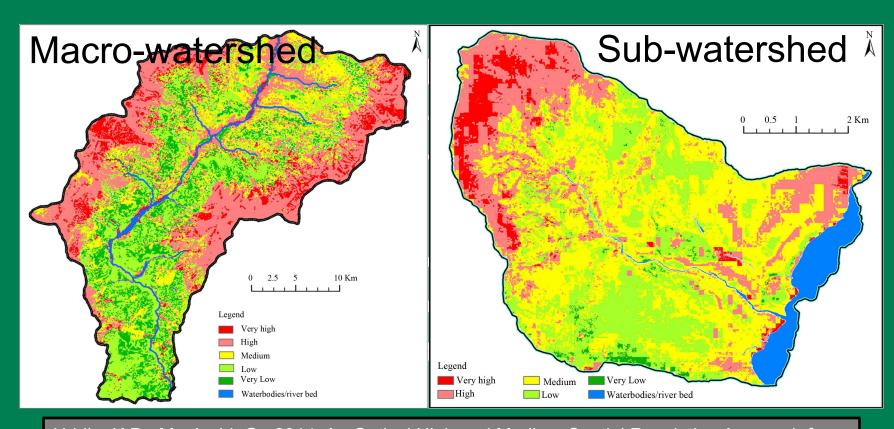
What is ASTER GDEM?

- Global Digital Elevation Model (GDEM)
- Product of METI and NASA
- Version 1 released June 29, 2009
 - 1.3 million ASTER VNIR scenes (as stereo-pairs) were used to produce single scene DEMs
 - Data from 2000 2008
- Improved Version 2 released October 17, 2011
 - Incorporated 260,000 more stereo-pairs from ASTER images collected after September 2008
- Freely available; redistribution restricted

ASTER GDEM Characteristics

Short name: ASTGTM

Data Set Characteristics Tile Size 3601 x 3601 (1 degree by 1 degree) Pixel Size. 1 arc-second. Geographic coordinates Geographic latitude and longitude DEM output format GeoTIFF, signed 16 bits in units of vertical meters Geoid reference WGS84/FGM96 Special DN values -9999 for void pixels, and 0 for sea water body Tile volume 25 MB uncompressed, 4-5 MB compressed North 83 degrees to south 83 degrees, 22,702 tiles Coverage



ASTER GDEM Characteristics (Cont'd)

Layers							
Data Fields	Units	Data Type	Valid Range	Fill Value			
Elevation (".dem")	Meters	16-bit signed integer	-500–9,000 (0 at sea level)	-9999			
QA (".num")	None	16-bit signed integer	0–200	-1 SRTM3 V3 -2 SRTM3 V2 -5 NED -6 CDED -11 Alaska DEM			

ASTER GDEM Use Case

Uddin, K.D., M.; Joshi, G., 2014, An Optical High and Medium Spatial Resolution Approach for Erosion-Prone Areas Assessment in Mustang, Nepal: International Journal of Geosciences, v. 5, p. 383-393. [Also available at http://dx.doi.org/http://dx.doi.org/10.4236/ijg.2014.54037.]

How to Access ASTER GDEM

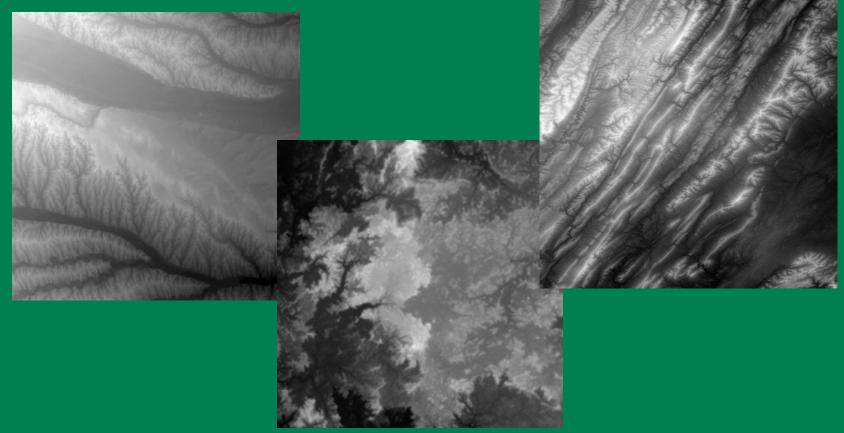
Reverb:

http://reverb.echo.nasa.gov/reverb

GDEx (demo today):

<u> http://gdex.cr.usgs.gov/gdex/</u>

Japan Space Systems GDEM:


<u> http://gdem.ersdac.jspacesystems.or.jp/</u>

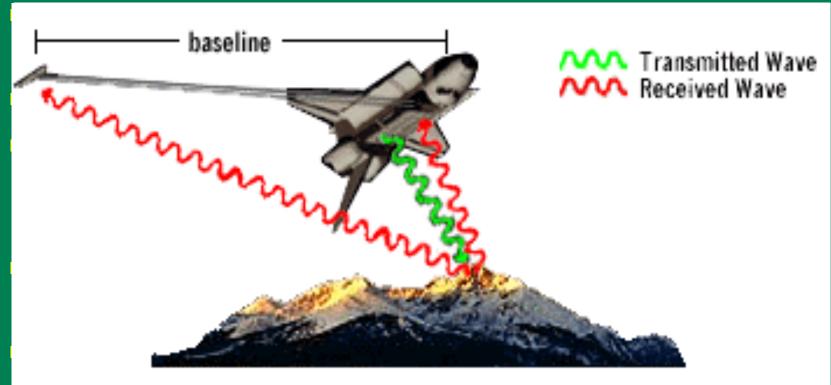
More information:

https://lpdaac.usgs.gov/products/aster_products_table/ aster_gdem_version_2_validation

Shuttle Radar Topography Mission (SRTM) Version 3.0 (SRTM Plus)

https://lpdaac.usgs.gov/products/measures_products_table

What is SRTM?


- NASA mission completed in February 2000
- Consisted of 176 orbits around Earth in 11 days
- Acquired DEM of all land between 60°N and 56°S latitude, about 80% of Earth's total landmass

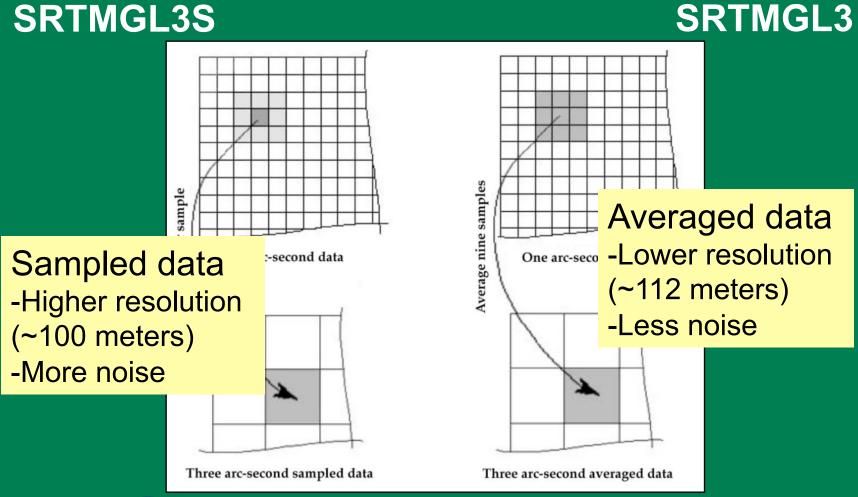
NASA SRTM Version 3.0 (SRTM Plus)

Radar signals being transmitted and recieved in the SRTM mission (image not to scale).

http://srtm.usgs.gov/data/interferometry.php

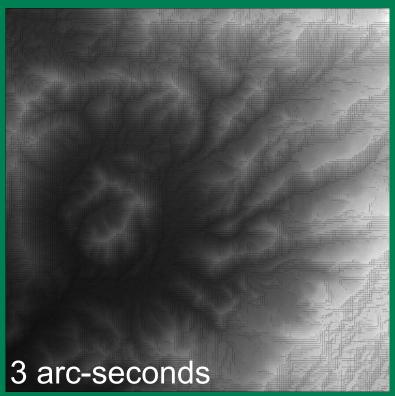
NASA SRTM v3 Characteristics

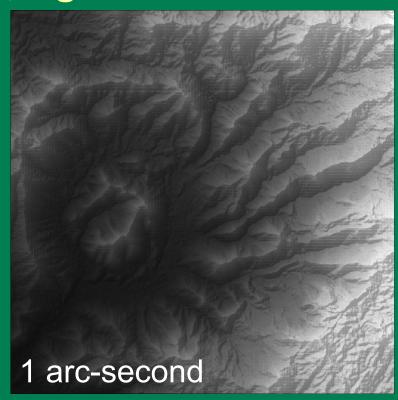
Tile size	1º by 1º
Pixel size	1 arc second (~30 meters) or 3 arc seconds (~90 meters)
Geographic coordinates	Geographic latitude and longitude
Output format	DEMS: .HGT, 16-bit signed integer, in units of vertical meters Number: .NUM
Geoid reference	WGS84/EGM96
Special DN values	N/A - No voids in v3
Coverage	60°N to 56°S latitude U.S. and Territories Africa



NASA SRTM v3 Products

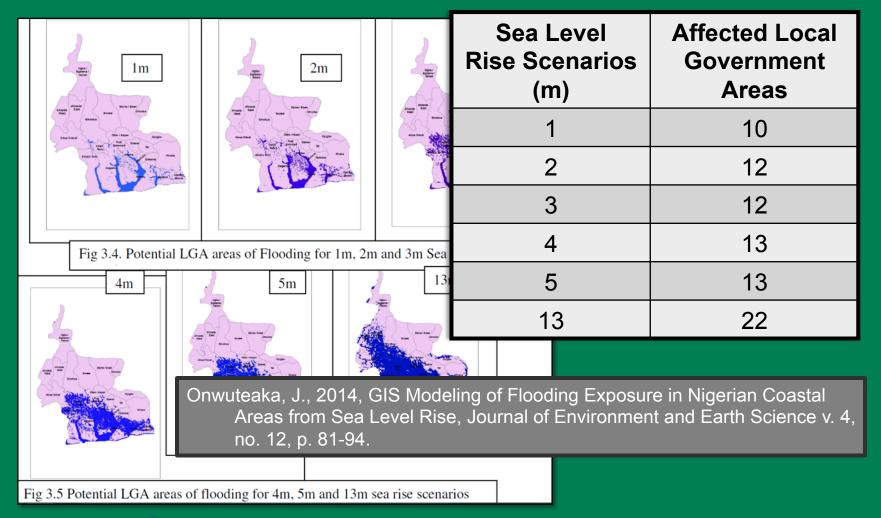
Short Name	Collection	MEaSUREs Data Product	Spatial Resolution
SRTMGL1	SRTM	SRTM Global 1 arc second	1 arc-second
SRTMGL1N	SRTM	SRTM Global 1 arc second number	1 arc-second
SRTMGL3	SRTM	SRTM Global 3 arc second	3 arc-second
SRTMGL30	SRTM	SRTM Global 30 arc second	30 arc-second
SRTMGL3N	SRTM	SRTM Global 3 arc second number	3 arc-second
SRTMGL3S	SRTM	SRTM Global 3 arc second sub-sampled	3 arc-second
<u>SRTMSWBD</u>	SRTM	SRTM Water Body Data Shapefiles & Raster Files	1 arc-second
SRTMUS1	SRTM	SRTM US 1 arc second	1 arc-second
SRTMUS1N	SRTM	SRTM US 1 arc second number	1 arc-second


Sampling Methods: Global 3 arc second data SRTMGL3S



NASA SRTM v3

Mount Elgon, Uganda


http://dx.doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003

http://dx.doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003

SRTM Data Use Case

How to Access NASA SRTM v3

Reverb:

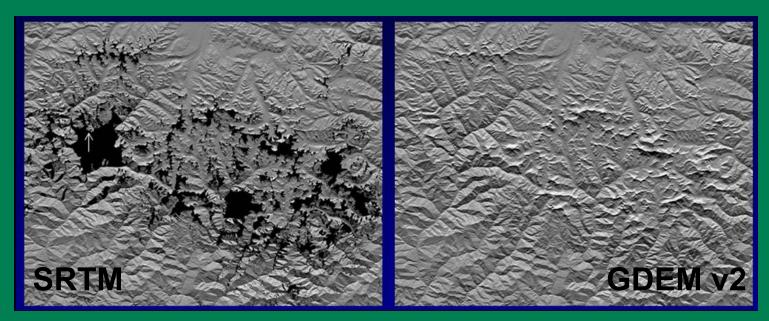
http://reverb.echo.nasa.gov/reverb

GDEx (demo today):

<u> http://gdex.cr.usgs.gov/gdex/</u>

Data Pool and DAAC2Disk:

<u> https://lpdaac.usgs.gov/data_access/data_pool</u>


More information: SRTM v3 User Guide

https://lpdaac.usgs.gov/sites/default/files/public/measures/docs/ NASA SRTM V3.pdf

Choosing data: What to consider

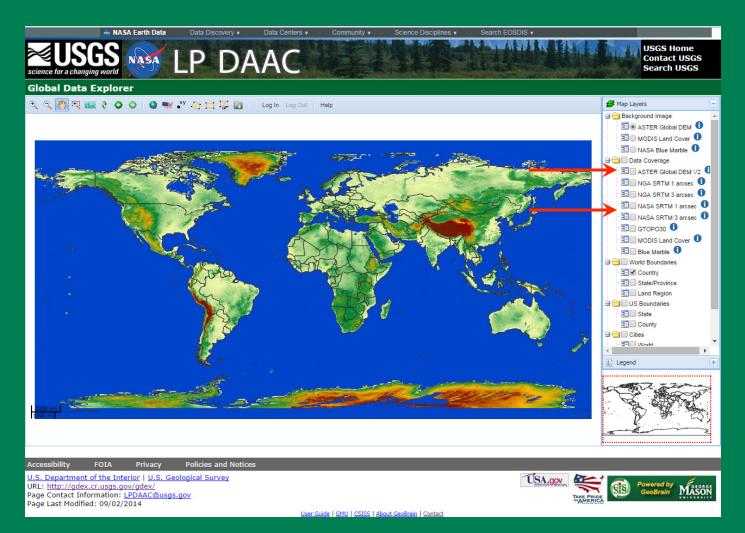
- Topographical features
 - Mountainous areas
 - Desert areas or areas with a lot of snow cover

Choosing data: What to consider

Geographic ex Areas with co Extreme latitum some data av **ASTER GDEM** SRTM -150 LAND 0 1 2 3 LONGITUDE WATER 0 1 2 3 4

Sources and Additional Reading

- JPL, 2005. SRTM: Frequently Asked Questions, www2.jpl.nasa.gov/srtm/faq.html
- JSS, n.d. ASTER Global Digital Elevation Model, <u>https://www.jspacesystems.or.jp/ersdac/GDEM/E/2.html</u>
- LP DAAC, 2012. ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer. Land Remote Sensing Data Access Workshop, March 13-14, 2012, https://lpdaac.usgs.gov/sites/default/files/public/user_community/docs/02%2BData%2BTalk
 %2BASTER pdf
- LP DAAC, 2013, SRTM Collection, https://lpdaac.usgs.gov/sites/default/files/public/measures/docs/NASA_SRTM_V3.pdf
- NASA JPL, 2009. Global Digital Elevation Model, <u>http://asterweb.jpl.nasa.gov/gallery-detail.asp?name=gdem</u>
- Tachikawa, T., Hato, M., Kaku, M., Iwasaki, A., 2011, Characteristics of ASTER GDEM Version 2, IGARRS 2011, Canada.
 - https://lpdaac.usgs.gov/sites/default/files/public/aster/docs/Tachikawa_etal_IGARSS_2011.pdf



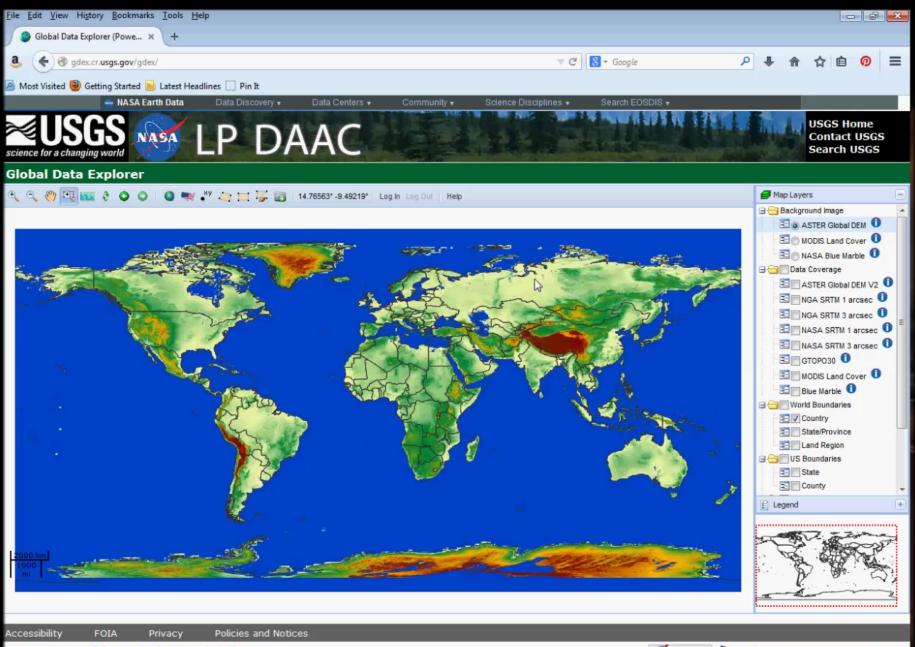
Global Data Explorer (GDEX)

- Funded through NASA ROSES 2005 ACCESS Program
- A collaboration between the LP DAAC and George Mason University's Center for Spatial Information Science and Systems
- A seamless data viewer providing access to multiple sources of digital elevation data sets
- Users can subset and download data by area of interest in multiple formats and projections
- http://gdex.cr.usgs.gov/gdex/

GDEx

GDEx Features and Functions

- NASA ECHO/Reverb user account required to download data
- Product documentation and User Guide
- Square or polygonal area of interest
- Pre-defined areas of interest (state, county)
- Advanced, on-the-fly processing
 - Mosaic tiles into coverage clipped to AOI
 - Reformat to GeoTIFF, ArcASCII, or JPEG
 - UTM or LAT/LON projection
- Preview data before download


GDEx Tile Limits

GDEx Demo

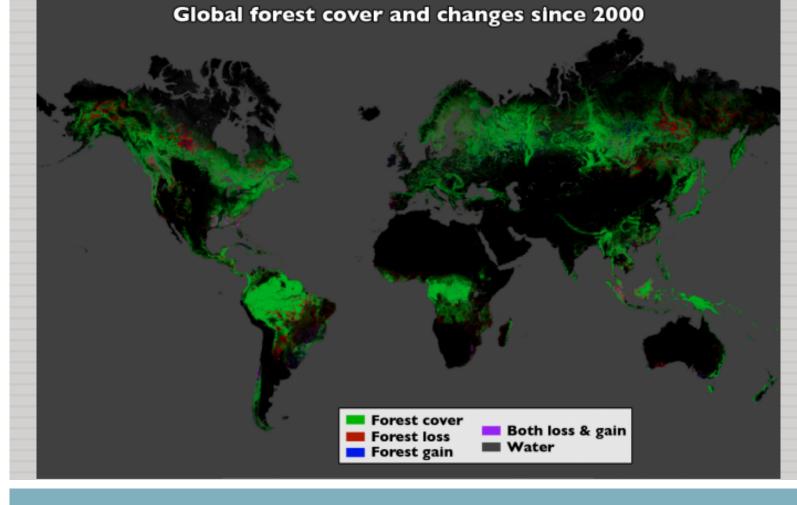
U.S. Department of the Interior | U.S. Geological Survey

URL: http://gdex.cr.usgs.gov/gdex/

Page Contact Information: LPDAAC@usgs.gov

Page Last Modified: 11/04/2014

Questions


Coming up next week!

Change Detection using Landsat and MODIS

Landsat, Global forest cover and change since 2000.

(NASA Goddard, based on data from Hansen et al., 2013)

November 17, 2014

Thank You!!

Cindy Schmidt
Cynthia.L.Schmidt@nasa.gov

Amber Kuss
Amberjean.M.Kuss@nasa.gov